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Overview

Agenda:
@ Qualitative outcomes and classification problem.
o LPM, logit and probit models.
o Estimation, interpretation and accuracy measures.

@ Extensions and other classification algorithms.

Readings:
@ ISLR sections 4.1, 4.2, 4.3
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Qualitative Outcomes

@ So far our outcome variable Y has always been assumed to be quantitative, e.g. price, quantity,
SAT score, etc.

o Qualitative variables (race, gender, geographical region, type of education, etc.) have only been
discussed as predictors.

@ But what if we want to quantify a relationship where the outcome Y is a qualitative variable?
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o Qualitative variables (race, gender, geographical region, type of education, etc.) have only been
discussed as predictors.

@ But what if we want to quantify a relationship where the outcome Y is a qualitative variable?

o A person arrives at an emergency room with symptoms that could be attributed to one of three medical
conditions.

e Online banking service assesses whether a transaction being performed is fraudulent based on user’s IP
address, past transaction history, transaction amount, etc.
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Qualitative Outcomes

@ So far our outcome variable Y has always been assumed to be quantitative, e.g. price, quantity,
SAT score, etc.

o Qualitative variables (race, gender, geographical region, type of education, etc.) have only been
discussed as predictors.

@ But what if we want to quantify a relationship where the outcome Y is a qualitative variable?

o A person arrives at an emergency room with symptoms that could be attributed to one of three medical
conditions.

e Online banking service assesses whether a transaction being performed is fraudulent based on user’s IP
address, past transaction history, transaction amount, etc.

e A researchers performs an analysis of socio-economic factors that affect whether a student graduates
from college or drops out.
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Basic Classification Problem

o Consider a qualitative variable Y that for every observation i takes a single value from a finite set
of possible unordered values C = {y1, y2,...,yc}.
o Y = eye color, C = {brown, blue, green}
e Y = medical diagnosis, C = {stroke, drug overdose, epileptic seizure}
e Y = transaction status, C = {fraudulent, non-fraudulent}
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Basic Classification Problem

o Consider a qualitative variable Y that for every observation i takes a single value from a finite set
of possible unordered values C = {y1, y2,...,yc}.
o Y = eye color, C = {brown, blue, green}
e Y = medical diagnosis, C = {stroke, drug overdose, epileptic seizure}
e Y = transaction status, C = {fraudulent, non-fraudulent}
@ Given a feature vector X and a qualitative response Y/, the classification task is to build a function
C(X) that takes as input the feature vector X and predicts its value for Y, i.e. C(X) € C.
@ In most cases we are interested in estimating the probabilities that Y belongs to a category in C

given X, i.e.
Pr(Y =y |X) Vy.ecC
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|
Linear Probability Model: Problems

@ Suppose for our medical condition classification we code

1, if Stroke
Y =12, if Drug Overdose
3, if Epileptic Seizure

Can we use our standard regression model to predict the medical condition of a patient in the
emergency room on the basis of her symptoms?
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|
Linear Probability Model: Problems

@ Suppose for our medical condition classification we code

1, if Stroke
Y =12, if Drug Overdose
3, if Epileptic Seizure

Can we use our standard regression model to predict the medical condition of a patient in the
emergency room on the basis of her symptoms?

@ Does this coding imply an ordering of outcomes?
@ In most cases, it is not possible for us to create a natural ordering in quantitative data
o A different coding
1, if Drug Overdose
Y =42, if Stroke
3, if Epileptic Seizure
Will generate a different model and different predictions
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Example: Credit Card Defaults
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|
Linear Probability Model

@ Suppose for our credit card default classification we code

Y_{o, if No
if Yes

Can we use our standard regression model to estimate a regression of ¥ on X and classify outcome
as Yes if Y > 0.57
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Linear Probability Model

@ Suppose for our credit card default classification we code

v 0, if No
1, if Yes

Can we use our standard regression model to estimate a regression of ¥ on X and classify outcome
as Yes if Y > 0.57

@ Given that Y is binary, we have
E(Y|X)=?
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Linear Probability Model

@ Suppose for our credit card default classification we code

v 0, ?f No
1, if Yes

Can we use our standard regression model to estimate a regression of ¥ on X and classify outcome
as Yes if Y > 0.57

@ Given that Y is binary, we have
E(Y|X)=1-Pr(Y =1|X)+0-Pr(Y =0|X) =Pr(Y = 1|X)

which means that in this case standard linear regression will estimate the probability of outcome
Y =1, hence the name linear probability model or LPM.
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|
Linear Probability Model

@ LPM retains all properties of linear regression, but the interpretation of the results is slightly different:
PF(Y = 1|X) =Bo+ 1 X1+ B Xo+ ... +BPXP +e€

_ OE[Pr(Y =1]X)] _ E[APr(Y = 1|X)]

B oX; B AX;

so regression coefficients now capture constant marginal probabilities of outcome Y = 1 given a
change in X;.

B
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@ LPM retains all properties of linear regression, but the interpretation of the results is slightly different:
PF(Y = 1|X) =Bo+ 1 X1+ B Xo+ ... +BPXP +e€

_ OE[Pr(Y =1]X)] _ E[APr(Y = 1|X)]

B oX; B AX;

so regression coefficients now capture constant marginal probabilities of outcome Y = 1 given a
change in X;.

B

@ LPM works very well in binary classification, especially if sample size is moderate to large.

@ But it also has some inherent disadvantages, with the most common ones being unreasonable values
of B; and predictions for probability outside of [0,1] interval.
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Linear Probability Model
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Linear Probability Model
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Linear Probability Model
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predictions for Pr(Y = 1|X) when
Balance is less than 500.
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Moving away from LPM

@ The problem with prediction in LPM stems from the fact that we use linear combination of features
X as the estimated probability itself.
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Moving away from LPM

@ The problem with prediction in LPM stems from the fact that we use linear combination of features
X as the estimated probability itself.

@ To avoid this problem, we can instead use a one-to-one mapping F(-) from R to [0, 1] interval:
Pr(Y = 11X) = F(Bo + BuXa + BaXa + ...+ BpXp)

e What could serve as a function F(-)? Infinitely many possibilities exist, but because this question
was first addressed by statisticians, a natural choice was a cumulative distribution function (cdf)
from some distribution.
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Moving away from LPM

@ The problem with prediction in LPM stems from the fact that we use linear combination of features
X as the estimated probability itself.

@ To avoid this problem, we can instead use a one-to-one mapping F(-) from R to [0, 1] interval:
Pr(Y = 11X) = F(Bo + BuXa + BaXa + ...+ BpXp)

e What could serve as a function F(-)? Infinitely many possibilities exist, but because this question
was first addressed by statisticians, a natural choice was a cumulative distribution function (cdf)
from some distribution.

@ For any random variable Z its cdf Fz(-) is by definition:
Fz(a) =Pr(Z < a)

@ In classical statistical learning the two most common choice for F(-) are standard normal and logistic

cdf.
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|
Probit and Logit Models

@ For simplicity, let's use the matrix notation:

Xﬁ:ﬂo+ﬂ1X1+ﬂQX2+...+ﬂpo
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Probit and Logit Models

@ For simplicity, let's use the matrix notation:
Xﬁ:ﬂo+ﬂ1X1+5QX2+...+ﬂpo

@ In probit model F(-) is assumed to be the cdf of a standard normal distribution:

_2
exp” 2 dz

XB
F(XB) = &(XB) = 1 jﬂ
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|
Probit and Logit Models

@ For simplicity, let's use the matrix notation:
XB = Bo+ Xy + BoXo+ ...+ B X,
@ In probit model F(-) is assumed to be the cdf of a standard normal distribution:
xs 1
—oo V2T

@ In /ogit model F(-) is assumed to be the cdf of a logistic distribution:

_2
exp” 2 dz

F(XB) = ®(XB) =

expXP

F(XB) = N(XB) = T+ exp”P
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Probit and Logit Models

O b b o SR ot -
..g o With either normal or logistic cdf as our
a F(-) function the estimated probability
5 o 7 will, by definition, always lie in [0, 1] in-
E < terval.
= o
< But if that were the only advantage of
'g g logit/probit models, they would not be-
o come the de-facto standard econometric
S - ——— N RHHE 4 - - == model for classification.

0 500 1000 1500 2000 2500
Balance
Module 2: Classification 1329



Generalized Linear Models

@ Both logit and probit are special cases of the so-called generalized linear models (GLMs). Every GLM
consists of three parts: the structural component, the link function and the response distribution.
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Generalized Linear Models

@ Both logit and probit are special cases of the so-called generalized linear models (GLMs). Every GLM
consists of three parts: the structural component, the link function and the response distribution.

@ Structural component is simply the linear combination of our predictors: X 3.
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Generalized Linear Models

@ Both logit and probit are special cases of the so-called generalized linear models (GLMs). Every GLM
consists of three parts: the structural component, the link function and the response distribution.

@ Structural component is simply the linear combination of our predictors: X 3.

@ The link function g(u) is such that its inverse gives us the (conditional) mean of our outcome Y as
a function of the structural component:

g(p) =XB or E(Y|X)=p=g ' (XP)

@ The link function is the key to GLMs: since the distribution of the response variable Y is non-normal
(in our simple example it is binomial), it's what lets us connect the structural component X3 to the
response Y — it 'links’ them (hence the name).
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Generalized Linear Models

@ Because our outcome Y is binary, we have E(Y|X) = Pr(Y = 1|X), and thus our inverse link
function g~! is simply the function that defines conditional probability of ¥ =1 given X.

@ For probit and logit models the corresponding cumulative distribution functions act as inverse link
functions:

Probit : E(Y|X) = py|x = Pr(Y = 1|X) = &(X3)
Logit : E(Y|X) = py|x = Pr(Y = 1|X) = A(X3)
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Generalized Linear Models

@ Because our outcome Y is binary, we have E(Y|X) = Pr(Y = 1|X), and thus our inverse link
function g~! is simply the function that defines conditional probability of ¥ =1 given X.

@ For probit and logit models the corresponding cumulative distribution functions act as inverse link
functions:

I
2
x
=

Probit : E(Y|X) = puy|x = Pr(Y = 1|X)
Logit : E(Y|X) = py|x = Pr(Y = 1|X) = A(X3)

o Note: standard MLR is also a special case of GLM with g(u) = u = X.
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Generalized Linear Models

@ Because our outcome Y is binary, we have E(Y|X) = Pr(Y = 1|X), and thus our inverse link

function g~! is simply the function that defines conditional probability of ¥ =1 given X.
@ For probit and logit models the corresponding cumulative distribution functions act as inverse link
functions:
Probit : E(Y|X) = py|x = Pr(Y = 1|X) = &(X3)
Logit : E(Y|X) = puyx = Pr(Y = 1|X) = A(X3)
@ Note: standard MLR is also a special case of GLM with g(u) = u = X3.

The two key differences of probit/logit models and usual MLR are estimation method and marginal
effects calculation/interpretation.
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Maximum Likelihood Estimation

@ Because we no longer have a direct connection between Y and our structural component X3, we
need to specify our loss function in a different way. Using our link function, we can for every
observation i wright down the probability of observing a certain value of Y; given values of X;
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Maximum Likelihood Estimation

@ Because we no longer have a direct connection between Y and our structural component X3, we
need to specify our loss function in a different way. Using our link function, we can for every
observation i wright down the probability of observing a certain value of Y; given values of X;

@ For example, for a logit model we have:

xip N\ xB \1TYi

1+ expXif 1+ expXiB
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Maximum Likelihood Estimation

@ Because we no longer have a direct connection between Y and our structural component X3, we
need to specify our loss function in a different way. Using our link function, we can for every
observation i wright down the probability of observing a certain value of Y; given values of X;

@ For example, for a logit model we have:

xip N\ xB \1TYi

1+ expXif 1+ expXiB

@ With the default assumption of i.i.d. observations we can wright down the joint probability or
likelihood function of seeing our sample:

«B) =TI Pr(Y = viIX)

i=1
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Maximum Likelihood Estimation

e Maximum likelihood estimation (ML) is a method that chooses parameters 3 so as to minimize the
loss function in form of the negative of the likelihood function:

BuL = argmin —£(3)
B

ML in Economics | Cappello | Fall'24 Module 2: Classification 17 /29



Maximum Likelihood Estimation

e Maximum likelihood estimation (ML) is a method that chooses parameters 3 so as to minimize the
loss function in form of the negative of the likelihood function:

BuL = argmin —£(3)
B

@ Under some general conditions ﬁML is efficient, consistent and asymptotically normal, just like EOLS.
In fact, one can show that standard OLS is a special case of ML if the error term € in MLR is exactly
normal.

@ But unlike OLS, ML is a more general estimation procedure and allows one to recover structural
parameters such as 3 in models that are far more flexible than standard MLR.
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|
Marginal Effects in Probit/Logit

@ The other key difference of logit/probit models from LPM is the fact that margial effects are now
calculated and interpreted in a different way:

op(X) _ 99(XB)
0X; 0X;

p(X) _ INXP)
ox;  oX

Probit : B # B Logit : Bi 7 B

where p(X) = Pr(Y = 1|X) for simplicity
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|
Marginal Effects in Probit/Logit

@ The other key difference of logit/probit models from LPM is the fact that margial effects are now
calculated and interpreted in a different way:

op(X) _ 99(XB)
0X; 0X;

Ip(X) _ ON(XB)

Probit : ox; = o,

B; # B; Logit : B; # B;

where p(X) = Pr(Y = 1|X) for simplicity
@ The marginal effects now depend on values of all variables in X, so we need to either estimate the

marginal effects at a specific value of all our predictors (typically means or medians) or calculate
their average over all values of X in our sample.

o Additionally, structural parameters 3 no longer have any direct interpretation on their own, with the
exception of a few special cases.
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Goodness-of-fit Measures

@ While LPM can use the standard R? as a well-defined goodness-of-fit measure, it is not an option
for logit/probit models due to the different loss function.

e In standard MLR an single R? value of 0.95 is an evidence of an excellent fit, but in classification

problems we are often more interested in class-specific performance, especially in areas such as
medicine or biology.
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@ While LPM can use the standard R? as a well-defined goodness-of-fit measure, it is not an option

for logit/probit models due to the different loss function.

e In standard MLR an single R? value of 0.95 is an evidence of an excellent fit, but in classification
problems we are often more interested in class-specific performance, especially in areas such as

medicine or biology.

o Consider the case where Y = 1 means a positive test result. Then our model's predictions fall into

one of the 4 possible cases:

Y=0 Y=1
Y=0
Y=1
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@ While LPM can use the standard R? as a well-defined goodness-of-fit measure, it is not an option
for logit/probit models due to the different loss function.

e In standard MLR an single R? value of 0.95 is an evidence of an excellent fit, but in classification
problems we are often more interested in class-specific performance, especially in areas such as
medicine or biology.

o Consider the case where Y = 1 means a positive test result. Then our model's predictions fall into
one of the 4 possible cases:

0 True Negative False Negative (Type Il Error)
1

Y
Y
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Goodness-of-fit Measures

@ While LPM can use the standard R? as a well-defined goodness-of-fit measure, it is not an option
for logit/probit models due to the different loss function.

e In standard MLR an single R? value of 0.95 is an evidence of an excellent fit, but in classification
problems we are often more interested in class-specific performance, especially in areas such as
medicine or biology.

o Consider the case where Y = 1 means a positive test result. Then our model's predictions fall into
one of the 4 possible cases:

Y=0 True Negative False Negative (Type Il Error)
Y =1 | False Positive (Type | Error) True Positive

e For a COVID-19 test or cancer screening, we care more FN then about FP.
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Goodness-of-fit Measures

@ While LPM can use the standard R? as a well-defined goodness-of-fit measure, it is not an option
for logit/probit models due to the different loss function.

e In standard MLR an single R? value of 0.95 is an evidence of an excellent fit, but in classification
problems we are often more interested in class-specific performance, especially in areas such as
medicine or biology.

o Consider the case where Y = 1 means a positive test result. Then our model's predictions fall into
one of the 4 possible cases:

Y=0 True Negative False Negative (Type Il Error)
Y =1 | False Positive (Type | Error) True Positive

e For a COVID-19 test or cancer screening, we care more FN then about FP.
e For city administration FPs in traffic cameras and speeding tickets are more important.
o In judicial system both FP and FN are equally important.
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Goodness-of-fit Measures

o Consider the following confusion matrix, depicting the prediction results for the Default dataset,
using 50% as a threshold for probability of default:

True default status

No | Yes | Total

No | 9644 | 252 | 9896

Predicted default status | Yes 23 81 104
Total | 9667 | 333 | 10000
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o Consider the following confusion matrix, depicting the prediction results for the Default dataset,
using 50% as a threshold for probability of default:

True default status

No | Yes | Total

No | 9644 | 252 | 9896

Predicted default status | Yes 23 81 104
Total | 9667 | 333 | 10000

o If we simply look at pure prediction precision, then:
o Our total error rate is (23 + 252)/10000 = 2.75%, which seems low enough.
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Goodness-of-fit Measures

o Consider the following confusion matrix, depicting the prediction results for the Default dataset,
using 50% as a threshold for probability of default:

True default status

No | Yes | Total

No | 9644 | 252 | 9896

Predicted default status | Yes 23 81 104
Total | 9667 | 333 | 10000

o If we simply look at pure prediction precision, then:

o Our total error rate is (23 + 252)/10000 = 2.75%, which seems low enough.
o Out of 104 predicted defaults 81 ended up being classified correctly, which means only 23/9667 = 0.24%

of all non-defaults were classified incorrectly.
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Goodness-of-fit Measures

o Consider the following confusion matrix, depicting the prediction results for the Default dataset,
using 50% as a threshold for probability of default:

True default status
No | Yes | Total
No | 9644 | 252 | 9896
Predicted default status | Yes 23 81 104

Total | 9667 | 333 | 10000

o If we simply look at pure prediction precision, then:
o Our total error rate is (23 + 252)/10000 = 2.75%, which seems low enough.
o Out of 104 predicted defaults 81 ended up being classified correctly, which means only 23/9667 = 0.24%
of all non-defaults were classified incorrectly.
o However, out of 333 true defaults we managed to miss 252/333 = 75.67%, which could be an unac-
ceptably high error rate for this class.
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Goodness-of-fit Measures

@ This why in classification problems it is important to evaluate class-specific precision via the following

four measures:

v_o True Negative Rate (TNR) or specificity:
TNR = TN/N = 9644 /9667 = 99.76%
y=1
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@ This why in classification problems it is important to evaluate class-specific precision via the following

four measures:

Y=0 Y=1
v_o True Negative Rate (TNR) or specificity: False Negative Rate (FNR):
TNR = TN/N = 9644 /9667 = 99.76% FNR = FN/P = 252/333 = 75.67%
Y=1
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Goodness-of-fit Measures

@ This why in classification problems it is important to evaluate class-specific precision via the following
four measures:

Y=0 Y=1
v_o True Negative Rate (TNR) or specificity: False Negative Rate (FNR):
TNR = TN/N = 9644 /9667 = 99.76% FNR = FN/P = 252/333 = 75.67%
~ False Positive Rate (FPR):
Y=1
FPR = FP/N = 23/9667 = 0.24%
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Goodness-of-fit Measures

@ This why in classification problems it is important to evaluate class-specific precision via the following
four measures:

Y=0 Y=1
v_o True Negative Rate (TNR) or specificity: False Negative Rate (FNR):
TNR = TN/N = 9644/9667 = 99.76% | FNR = FN/P = 252/333 = 75.67%
v_1 False Positive Rate (FPR): True Positive Rate (TPR) or sensitivity:
FPR = FP/N = 23/9667 = 0.24% TPR = TP/P = 81/333 = 24.33%
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v_1 False Positive Rate (FPR): True Positive Rate (TPR) or sensitivity:
FPR = FP/N = 23/9667 = 0.24% TPR = TP/P = 81/333 = 24.33%

ML in Economics | Cappello | Fall'24 Module 2: Classification 21/29



Goodness-of-fit Measures

@ This why in classification problems it is important to evaluate class-specific precision via the following
four measures:

Y=0 Y=1
v_o True Negative Rate (TNR) or specificity: False Negative Rate (FNR):
TNR = TN/N = 9644/9667 = 99.76% | FNR = FN/P = 252/333 = 75.67%
v_1 False Positive Rate (FPR): True Positive Rate (TPR) or sensitivity:
FPR = FP/N = 23/9667 = 0.24% TPR = TP/P = 81/333 = 24.33%

@ As one can easily see, all four measures are related to each other. In particular, the following two
identities must always hold:

TNR + FPR =100% and TPR+FNR = 100%
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Goodness-of-fit Measures

The table on the previous slide was constructed using the rule Y =1 if PAr(Y = 1|X) > 0.5, because 0.5

is the most common probability threshold used for classification predictions. However, the values of all 4
goodness-of-fit metrics will change if we change this threshold.
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Goodness-of-fit Measures

The table on the previous slide was constructed using the rule Y =1 if PAr(Y = 1|X) > 0.5, because 0.5
is the most common probability threshold used for classification predictions. However, the values of all 4
goodness-of-fit metrics will change if we change this threshold.
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|
Logit vs Probit

While logit and probit models usually deliver very similar estimation results (especially on large datasets),
modern statistical learning overwhelmingly prefers to use logistic regression. Why?
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Logit vs Probit

While logit and probit models usually deliver very similar estimation results (especially on large datasets),
modern statistical learning overwhelmingly prefers to use logistic regression. Why?

e Coefficient interpretation. In Economics we are interested in calculating and interpreting marginal
effects, but in logit model one can also interpret the actual values of ﬂj themselves. This is because

in logit model coefficient BJ shows how the log of odds ratio changes with changes in X;:

p(X)
p(X) \ _ , 8’”(1 p(X))
n(205) = X8 = =g
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Logit vs Probit

While logit and probit models usually deliver very similar estimation results (especially on large datasets),
modern statistical learning overwhelmingly prefers to use logistic regression. Why?

e Coefficient interpretation. In Economics we are interested in calculating and interpreting marginal
effects, but in logit model one can also interpret the actual values of ﬂj themselves. This is because

in logit model coefficient BJ shows how the log of odds ratio changes with changes in X;:

)
pX) 1\ _ oin (2%
n(2m) X0 = -

@ Random utility models. Suppose consumer is choosing between two alternatives based on utility
that is a function of observable product attributes X and a random utility shock €. Then if ¢ follows
Type | EV distribution, consumer’s choice probabilities will take logit form (McFadden, D. (1973)).
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|
Logit vs Probit

While logit and probit models usually deliver very similar estimation results (especially on large datasets),
modern statistical learning overwhelmingly prefers to use logistic regression. Why?

e Coefficient interpretation. In Economics we are interested in calculating and interpreting marginal
effects, but in logit model one can also interpret the actual values of ﬂj themselves. This is because

in logit model coefficient BJ shows how the log of odds ratio changes with changes in X;:

)
pX) 1\ _ oin (2%
n(2m) X0 = -

@ Random utility models. Suppose consumer is choosing between two alternatives based on utility
that is a function of observable product attributes X and a random utility shock €. Then if ¢ follows
Type | EV distribution, consumer’s choice probabilities will take logit form (McFadden, D. (1973)).

o Generalized choice models and information theory (Matejka, F. and McKay, A. (2015).
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Multinomial and Ordered Outcomes

@ In binary outcome case all three options (LPM, logit, probit) are applicable and most times yield
similar results, especially in large samples. But once we move beyond basic binary case, LPM becomes
structurally infeasible.
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Multinomial and Ordered Outcomes

@ In binary outcome case all three options (LPM, logit, probit) are applicable and most times yield
similar results, especially in large samples. But once we move beyond basic binary case, LPM becomes
structurally infeasible.

@ Two hospitals use the following coding for incoming ER patients:

1, if drug overdose 1, if stroke
Y = (2, if stroke and Y =<5, if epileptic seizure
3, if epileptic seizure 6, if drug overdose

@ This is an example of multinomial unordered classification. The fundamental difference with binary
case is that here different coding will yield different results in LPM, but not in logit/probit.
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Multinomial and Ordered Outcomes

@ In binary outcome case all three options (LPM, logit, probit) are applicable and most times yield
similar results, especially in large samples. But once we move beyond basic binary case, LPM becomes
structurally infeasible.

@ Two hospitals use the following coding for incoming ER patients:

1, if drug overdose 1, if stroke
Y = (2, if stroke and Y =<5, if epileptic seizure
3, if epileptic seizure 6, if drug overdose

@ This is an example of multinomial unordered classification. The fundamental difference with binary
case is that here different coding will yield different results in LPM, but not in logit/probit.

@ Same thing happens with ordered outcomes, e.g. "strongly disagree, disagree, uncertain, agree,
strongly agree", where we cannot impose a standardized numerical difference between outcomes (as
opposed to something like number of kids in the family as the outcome).
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Other SL and ML Classification Algorithms

@ While research in econometrics over the past 50 years has developed a very wide range of discrete
choice models, it wasn't just economics and casual inference that has been driving the development
of statistical learning in classification problems.

@ Areas such as genetics, biostatistics, pharmaceutics and others have always had a need for statistical
models that could precisely classify certain outcomes.
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|
Other SL and ML Classification Algorithms

@ While research in econometrics over the past 50 years has developed a very wide range of discrete
choice models, it wasn't just economics and casual inference that has been driving the development
of statistical learning in classification problems.

@ Areas such as genetics, biostatistics, pharmaceutics and others have always had a need for statistical
models that could precisely classify certain outcomes.

@ In recent decade huge advances in new variations of previously less used methods such as neural
networks have been achieved due to ever-increasing demand for classification and prediction in modern
data-dominated areas such as image and voice recognition.

e We will not be covering those methods in details (at least not till later in the course), because
all of them are nearly completely irrelevat for causal inference. But because they have some other
advantages, they deserve an honorary mentioning.
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Discriminant analysis

o Instead of directly modeling Pr(Y|X), model the distribution of X in each of the C classes separately,
and then use Bayes theorem to flip things around and obtain Pr(Y|X):

_ Py =j)PrX=xY=)) _  mfx)
SO PHY =j)Pr(X =x|Y =) L mfi(x)

where fj(x) = Pr(X = x|Y = j) is the density for X in class j and w; = Pr(Y = j) is the prior
probability for class j.

Pr(Y =j|X =x)
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Discriminant analysis

o Instead of directly modeling Pr(Y|X), model the distribution of X in each of the C classes separately,
and then use Bayes theorem to flip things around and obtain Pr(Y|X):

_ Py =j)PrX=xY=)) _  mfx)
SO PHY =j)Pr(X =x|Y =) L mfi(x)

where fj(x) = Pr(X = x|Y = j) is the density for X in class j and w; = Pr(Y = j) is the prior
probability for class j.

Pr(Y =j|X =x)

@ Both f;(x) and 7; are estimated from the data, with the most common choice being normal density
for fi(x).
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Discriminant analysis

o Instead of directly modeling Pr(Y|X), model the distribution of X in each of the C classes separately,
and then use Bayes theorem to flip things around and obtain Pr(Y|X):
Pr(Y =j)Pr(X =x|Y =j)  mfi(x)

Pr(Y =j|X =x) = =
(=] ) S Pr(Y =j)Pr(X =x|Y =j) Y mfi(x)

where fj(x) = Pr(X = x|Y = j) is the density for X in class j and w; = Pr(Y = j) is the prior
probability for class j.

@ Both f;(x) and 7; are estimated from the data, with the most common choice being normal density

for fi(x).

@ DA works especially well in small samples with well-separated classes and X variables that have
approximately normal distributions.
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|
K-nearest Neighbors

@ For any given test observation xg and a positive integer K, first identify K points in the training data
that are closest to xp, denoted as Ay. Then the conditional probability for class j is calculated as

. 1 .
Pr(Y =jIX =x0) = 22 D> Iyi=))
iGNo

which is simply a fraction of points in Ay with response values equal to j.
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|
K-nearest Neighbors

@ For any given test observation xg and a positive integer K, first identify K points in the training data
that are closest to xp, denoted as Ay. Then the conditional probability for class j is calculated as

. 1 .
Pr(Y =jIX =x0) = 22 D> Iyi=))
iGNo

which is simply a fraction of points in Ay with response values equal to j.

@ KNN is an example of non-parametric supervised learning algorithm and as such places almost no
restrictions on the nature of the data.

o It quickly loses its potency when the number of features in X grows above 4-5 (too many points in
high-dimensional space could be equally close to xg). Thus it is often paired with other methods

aimed at feature extraction and dimensionality reduction, such as principal component analysis
(PCA).
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Decision trees

o Create a sequence of binary splits that partitions (stratifies, segments) the feature space X (i.e. the
set of possible values for X1, Xz, ..., X,) into J distinct and non-overlapping regions Ry, Ro,..., R;.
Then predict that each observation belongs to the most commonly occurring class of training obser-
vations in the region to which it belongs.
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Decision trees

o Create a sequence of binary splits that partitions (stratifies, segments) the feature space X (i.e. the
set of possible values for X1, Xz, ..., X,) into J distinct and non-overlapping regions Ry, Ro,..., R;.
Then predict that each observation belongs to the most commonly occurring class of training obser-
vations in the region to which it belongs.

@ Decision trees are very easy to explain and interpret, especially when they are small enough to be
displayed graphically.

@ Some believe that decision trees are a more natural way to model human decision making, as opposed
to regressions and other methods.
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Decision trees

o Create a sequence of binary splits that partitions (stratifies, segments) the feature space X (i.e. the
set of possible values for X1, Xz, ..., X,) into J distinct and non-overlapping regions Ry, Ro,..., R;.
Then predict that each observation belongs to the most commonly occurring class of training obser-
vations in the region to which it belongs.

@ Decision trees are very easy to explain and interpret, especially when they are small enough to be
displayed graphically.

@ Some believe that decision trees are a more natural way to model human decision making, as opposed
to regressions and other methods.

@ In their basic forms decision trees tend to have inferior levels of prediction accuracy compared to
even basic LPM, but by employing modifications that allow aggregation and randomization of many
trees into ensembles (forests) one can improve their accuracy drastically, although at the cost of
interpretability.
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Neural Networks

Hidd e : - i
e o Artificial neural networks (ANNs) is a learning/computing system

Tnput that vaguely resembles neural systems in animal brains. ANNs con-
sist of multiple layers (input layer, output layer and one or more
hidden layers) of nodes called neurons, each capable of receiving and
transmitting signals via connections to other neurons.

Output
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Neural Networks

Hidd e : - i
e o Artificial neural networks (ANNs) is a learning/computing system

Tnput that vaguely resembles neural systems in animal brains. ANNs con-
sist of multiple layers (input layer, output layer and one or more
hidden layers) of nodes called neurons, each capable of receiving and
transmitting signals via connections to other neurons.

Output

of another neuron is assigned a weight. The propagation function
computes the input to a neuron from the outputs of its predecessor
neurons and their connections as a weighted sum.

Q @ Each connection transferring the output of a neuron to the input
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Neural Networks

Hidd e : - i
e o Artificial neural networks (ANNs) is a learning/computing system

Tnput that vaguely resembles neural systems in animal brains. ANNs con-
sist of multiple layers (input layer, output layer and one or more
hidden layers) of nodes called neurons, each capable of receiving and
transmitting signals via connections to other neurons.

Output

of another neuron is assigned a weight. The propagation function
computes the input to a neuron from the outputs of its predecessor
neurons and their connections as a weighted sum.

Q @ Each connection transferring the output of a neuron to the input

@ ANN learns by adjusting its weighted associations according to a
learning rule, using the error between the inputs and predicted out-
puts.
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